

Past Papers Int 2 Chemistry

2004 Marking Scheme

Grade Awarded	Mark Required (/80)		% candidates achieving grade
Α	56+	70%	27.7%
В	47+	59%	18.2%
С	39+	49%	20.8%
D	33+	41%	11.1%
No award	< 33	<41%	22.1%

2004 Int2 Chemistry Marking Scheme			
M <i>C</i> Qu	Answer	% Pupils Correct	L L L L L L L L L L L L L L L L L L L
1	D	92	☑A Nitrogen is in group 5 so is not a Noble Gas (group 0) ☑B Fluorine is in group 7 so is not a Noble Gas (group 0) ☑C Oxygen is in group 6 so is not a Noble Gas (group 0) ☑D Neon is in group 0 so is a Noble Gas
2	A	78	$\square A \ HCl(g) + H_2O(I) \rightarrow H^{+}(aq) + OH^{-}(aq)$ is the correct equation $\square B \ Solution \ of \ H^{+} \ and \ OH^{-} \ ions \ are \ written \ as \ H^{+}(aq) + OH^{-}(aq) \ not \ H^{+}(I) + OH^{-}(I)$ $\square C \ Hydrogen \ chloride \ gas \ is \ written \ as \ HCl(g) \ not \ HCl(aq)$ $\square D \ Solution \ of \ H^{+} \ and \ OH^{-} \ are \ written \ as \ H^{+}(aq) + OH^{-}(aq) \ not \ H^{+}(I) + OH^{-}(I)$
3	В	51	Rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}} = \frac{1.00 - 0.25}{25 - 0} = \frac{0.75}{25} = 0.3 \text{ mol } l^{-1}$
4	С	73	
5	A	h h	In neutral atoms: number of protons = number of electrons Number of protons = atomic number = 26 = number of electrons
6	D	52	■ A Non-polar covalent: pairs of electrons being shared equally between bonds ■ B Polar covalent: pairs of electrons being shared unequally between bonds ■ C Ionic: the attraction of oppositely charge ions for each other ☑ D Metallic: the attraction of positively charged ions for delocalised electrons
7	Α	48	✓ A Reaction at negative electrode: $Ag^+ + e^- \rightarrow Ag$ ■ B Positive ions gain electrons to become neutral atoms not lose electrons ■ C Positive ions travel to the negative electrode not the positive electrode ■ D Positive ions travel to the negative electrode not the positive electrode
8	В	85	 ☑A C₇H₁₆ is a alkane due to general formula C_nH_{2n+2} ☑B C₇H₁₄ is a cycloalkane with general formula C_nH_{2n} ☑C C₇H₁₂ is not a cycloalkane as it does not fit general formula C_nH_{2n} ☑D C₇H₁₀ is not a cycloalkane as it does not fit general formula C_nH_{2n}
9	С	81	☑A All carbon-based plastics will release carbon monoxide (CO) when burned ☑B All carbon-based plastics will release carbon dioxide (CO₂) when burned ☑C Polymer does not have chlorine in structure so cannot release HCl when burned ☑D This polymer releases hydrogen cyanide (HCN) when burned due to -CN groups
10	C	43	Oils contain C=C double bonds which keeps molecules far enough apart to be a liquid. Addition of hydrogen across C=C double bonds changes the shape of the molecule and hardens the liquid oil into a solid fat as the carbon chains straighten and fat molecules fit together closely.
11	A	86	☑A 5 carbon main chain with -CH3 methyl groups on carbons 2 and 3. ☑B molecule is numbered incorrectly and does not give lowest numbering system ☑C main chain has 5 carbons so is pentane not 3 carbon propane ☑D main chain has 5 carbons so is pentane not 3 carbon propane

12	С	75	C_3H_8 is called propane \therefore alkane with general formula C_nH_{2n+2} $\boxtimes A$ Molecule is cyclobutane C_4H_8 so is not an alkane with general formula C_nH_{2n+2} $\boxtimes B$ Molecule is but-2-ene C_4H_8 so is not an alkane with general formula C_nH_{2n+2} $\boxtimes C$ Molecule is 2-methylbutane C_5H_{12} is an alkane with general formula C_nH_{2n+2} $\boxtimes D$ Molecule is 2-methylbutene C_5H_{10} is not an alkane with general formula C_nH_{2n+2}		
13	В	86	Molecule 1 Molecule 2 Molecule 3 Molecule 4 CH_2O C_2H_4O C_3H_6O C_4H_8O $equal formula = C_nH_2nO$		
14	С	41	☑A Condensation: small molecules join together with water removed at join ☑B Dehydration: water is removed and a C=C double bond is left behind ☑C Hydration: water is added across a C=C double bond in ethane to make ethanol ☑D Hydrolysis large molecule breaks down with water inserted at the break		
15	В	85	 ☑A -CH₃ and -COOCH₃ groups must be on the same carbon ☑B monomer has -CH₃ and -COOCH₃ on the same carbon & has a C=C double bond ☑C -CH₃ and -COOCH₃ groups must be on the same carbon ☑D molecule lacks C=C double bond to be the monomer which joins together 		
16	В	58	■ A molecule has same structure as molecule 1 so it not an isomer □ B molecule has same formula C ₄ H ₈ and is an isomer as it has different structure □ C molecule has formula C ₄ H ₆ so has different formula and is not a formula □ D molecule has formula C ₄ H ₆ so has different formula and is not a formula		
17	В	46	ReactionReaction TypeEquationXcondensation $nC_6H_{12}O_6 \longrightarrow (C_6H_{10}O_5)_n + nH_2O$ Yhydrolysis $(C_6H_{10}O_5)_n + nH_2O \longrightarrow nC_6H_{12}O_6$		
18	D	60			
19	С	47	Glycerol is also called propane-1,2,3-triol $H-C-C-C-H$ OH OH OH		
20	A	48	☑A Amine groups have the functional group -NH ₂ ☑B Proteins are polymers of joined up amino acids with peptide links (NH-CO) ☑C Amino Acids have 2 functional groups: Amine -NH ₂ and carboxyl -COOH ☑D Carboxylic acids contain the carboxyl functional group -COOH		
21	D	70	concentration = $\frac{\text{no. of mol}}{\text{volume}} = \frac{0.5 \text{ mol}}{0.250 \text{ litres}} = 2 \text{ mol } l^{-1}$		
22	С	69	 ☑A oxidation is loss of electrons ∴ electrons appear after arrow ☑B oxidation is loss of electrons ∴ electrons appear after arrow ☑C reduction is gain of electrons: Fe³⁺ gains electron to become Fe²⁺ ☑D reduction is gain of electrons but Fe³⁺ is on wrong side of equation 		
23	В	74	☑A non-metal oxides e.g. carbon dioxide dissolve in water in form acids ☑B copper oxide is insoluble in water (p8 of data book) so pH is unchanged ☑C metal oxides e.g. sodium oxide dissolve in water in form alkali ☑D non-metal oxides e.g. sulphur dioxide dissolve in water in form acids		

			Bases neutralise acids:
24	A	E0	acid + metal hydroxide (alkali) → salt + water
24	A	59	acid + metal oxide salt + water
			acid + metal carbonate → salt + water + carbon dioxide
			☑A calcium chloride and copper bromide are both soluble : no precipitate
25		11	☑B lithium chloride and copper sulphate are both soluble ∴ no precipitate
25		61	▼ C magnesium chloride and copper nitrate are both soluble : no precipitate
			☑D copper hydroxide is insoluble so forms as a precipitate
			☑A Nitrogen dioxide is an acidic oxide so reacts with an alkaline solution
		~ ~	☑B Ammonia forms an alkali in water so does not react with an alkaline solution
26	A	38	☑C Oxygen is neutral so does not react with and alkaline solution
			☑D Argon is neutral in water so does not react with an alkaline solution
			■ A Electrons travel through wires, ions travel through the solution
			1
27		60	EB Electrons travel through wires, ions travel through the solution
			EC Electrons travel from zinc (higher metal) to tin (lower metal)
			D Electrons travel through wires from zinc (higher metal) to tin (lower metal)
		65	☑A iron is less reactive than magnesium no displacement reaction
28	В		☑B iron is more reactive than tin ∴ displacement reaction takes place
20			☑ C iron is less reactive than sodium : no displacement reaction
			☑D iron is less reactive than zinc ∴ no displacement reaction
		D 60	Cell Voltage Metal 1 Metal 2 Reasoning
20	_		A 1.5V Silver zinc biggest difference in metals ∴ highest voltage
29			B 1.1V copper zinc 2 nd biggest difference in metals : 2 nd highest voltage
			C 0.6V Tin zinc 2nd smallest difference in metals ∴ 2nd lowest voltage D 0.3V Iron zinc smallest difference in metals ∴ lowest voltage
		A 58	✓ A Aluminium is so reactive that it must be made by molten electrolysis
30	Δ		☑B Copper is made by heating copper ore with carbon
	/		☑C Iron is made by heating iron ore with carbon in a blast furnace
			☑D Gold ore releases gold metal by heating the ore alone

	2004 Int2 Chemistry Marking Scheme			
Long Qu	Answer	Reasoning		
1a(i)	81 35 Br	Mass number \longrightarrow 81 Atomic number \longrightarrow 35		
1a(ii)	46	No. of protons = atomic number = 35 No. of neutrons = mass number - atomic number = 81 - 35 = 46 No. of electrons = atomic number - charge = 35 - 0 = 35		
1b	Equal percentage of 79 and 81 present	If relative atomic mass closer to 79 than 81 If relative atomic mass half way between to 79 and 81 Equal amounts of 79 and 81 If relative atomic mass closer to 81 than 79 More 81 present than 79		
2a	2CO + 2NO ↓ 2CO ₂ + N ₂	$2CO + 2NO \longrightarrow 2CO_2 + N_2$		
2b	Catalyst in different state from reactants	Type of Catalyst Definition Homogeneous Catalyst in same state as reactants Heterogeneous Catalyst in different state from reactants		
3a	to suction pump lime water	Carbon dioxide and water are formed from burning hydrocarbons like candle wax. • Hydrogen in a hydrocarbon burns to form water • Carbon is a hydrocarbon burns completely to form carbon dioxide		
3b	Water	Cobalt chloride paper can be used to detect the presence of water		
3c	Incomplete combustion	Soot (carbon) is formed during incomplete combustion. Carbon monoxide and soot are formed when there is a limited air supply and not enough oxygen available for complete combustion.		
4 a	H Cl	H cl or H Cl		
4b	Polar (covalent)	A covalent bond is a shared pair of electrons between 2 non-metal atoms. When the electrons are shared unequally within the bond, the bond is polar and has a slightly positive end and a slightly negative end.		
5a	H	ElementCarbonHydrogenOxygenNitrogenNo. of bonds4123		

5b	0.5	1 mol urea $H_2NCONH_2 = (4x1) = (2x14) + (1x12) + (1x16) = 4 + 28 + 12 + 16 = 60g$ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{30}{60} = 0.5 \text{ mol}$
5c(i)	Line graph showing:	½mark: labelling axes ½mark: correct scales ½mark: plotting points ½mark: drawing line
5c(ii)	0.22±0.01	Problem Solving: Reading information from a graph
6a	$2H^{+} + 2OH^{-} \rightarrow 2H_{2}O$ or $H^{+} + OH^{-} \rightarrow H_{2}O$	$2NH_4^+ + 2OH^- + 2H^+ + 5O_4^{2-} \rightarrow 2NH_4^+ + 5O_4^{2-} + 2H_2O$ Cancel out any spectator ions which appear on both sides $2NH_4^+ + 2OH^- + 2H^+ + 5O_4^{2-} \rightarrow 2NH_4^+ + 5O_4^{2-} + 2H_2O$ Re-write equation omitting spectator ions $2OH^- + 2H^+ \rightarrow 2H_2O$
6b	Turns blue	Ammonia gas dissolves in the water on damp pH paper and turns it blue. Ammonia dissolves in water to form ammonium hydroxide
6c	Fertiliser	Fertilisers are soluble compounds containing the elements: Nitrogen Phosphorus Potassium
7a	aluminium oxide catalyst liquid paraffin bromine solution	Problem Solving: Information transfer from written passage to diagram
7b	Remove bromine test tube from delivery tube	PPA Safety Question
8a	Neutralisation	acid + metal hydroxide (alkali) → salt + water acid + metal oxide → salt + water acid + metal carbonate → salt + water + carbon dioxide
8b	304	$ \begin{aligned} & \text{gfm FeO} = (1 \times 56) + (1 \times 16) = 56 + 16 = 72g \\ $
9a	oxygen nitrogen monoxide oxygen sulphurous acid	Problem Solving: Transferring information from written passage to flow chart
9b	Line from: Reaction 3 circle Line to: Nitrogen Monoxide box between Reaction 1 and Reaction 2	In the chemical industry, chemicals are often recycled to save resources and costs.
9с	Full Dissociation of H ⁺ ions	Strong Acid: Full dissociation of molecules to release H ⁺ ions Weak Acid: Partial dissociation of molecules to release H ⁺ ions

10а	Amino acid	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10b(i)	O H - - C - N -	Peptide and amide links are chemically the same combination of bonds • Peptide likes are found in proteins • Amide links are found in polyamide polymers e.g. nylon
10b(ii)	H O N-CH2-C OH	Also can be drawn: $ \begin{array}{cccccccccccccccccccccccccccccccccc$
10c	Enzyme denatures or changes shape	Enzymes are specifically shaped proteins which catalyse chemical reactions at body temperatures. High temperatures can permanently change the shape of the enzyme and the enzyme no longer can catalyse the reaction
11a	Condensation	Condensation reactions join two smaller molecules together to make a larger molecule with a small molecule like water removed at the join.
11b(i)	Hydrogen H₂	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
11b(ii)	Fermentation of sugar	glucose $\frac{\text{yeast}}{\text{(no air)}}$ alcohol + carbon dioxide $C_6H_{12}O_6 \xrightarrow{\text{yeast}} 2C_2H_5OH + 2CO_2$
12a	2H2O+2Cl ⁻ → Cl2+H2	$2Cl^- ightharpoonup Cl_2 + 2e^ 2H_2O + 2e^- ightharpoonup 2OH^- + H_2$ Add together equations cancelling out electrons $2H_2O + 2Cl^- ightharpoonup Cl_2 + H_2$
12b	Negative charges on membrane repel OH ⁻ ions	The negative charges on the membrane will electrostatically repel negative ions like OH ⁻ hydroxide ions. Positive ions, e.g. Na ⁺ ions have no problem approaching and passing through the membrane.
12c	thermoplastic	Thermoplastic Plastic which re-shaped on heating Thermosetting Plastic which does not re-shape on heating
13a	Molecular covalent	Molecular Covalent Low melting/boiling point Covalent Network High melting point
13b	Carbon, nitrogen and hydrogen	Product Elements present that must be TNT Carbon dioxide Carbon (only) Nitrogen Nitrogen water Hydrogen (only)
14a	2 4 6	The concentration is being varied by decreasing the volume of sodium persulphate and increasing the volume of water added by the same volume. Overall, the total volume of liquid must remain the same in this fair test.

14b	Blue/black colour appears	PPA 1.1 Question Starch turns blue/black in response to the iodide ions turning into iodine			
14c	Reaction rate is too slow	PPA 1.1 Question Colour change is too slow to distinguish the end point.			
14d	Na ₂ S ₂ O ₈	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
15a(i)	Negative terminal provides electrons to iron to prevent rusting	Cathodic protection is the attaching of metal to the negative terminal of a DC power source. The electrons from the negative terminal turn metal ions created by corrosion back into metal ions. e.g. $Fe^{2+} + 2e^{-}$			
15a(ii)	Sea water contains ions	Electrolyte is needed to complete a circuit. All electrolyte contains ions. Sea water contains sodium ions and chloride ions			
15b	Any answer from:	Paint/grease/coat in plastic er from: Galvanise/attach zinc Attach a more reactive metal			
16a	Indicator An indicator must be added to show the endpoint of the cher				
16b	0.123 mol l ⁻¹	HNO3 no. of mol = volume × concentration = 0.0246litres × 0.1mol l^{-1} = 0.00246mol KOH + HNO3 \longrightarrow KNO3 + H ₂ O 1mol 1mol 0.00246mol 0.00246mol concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{0.00246\text{mol}}{0.02\text{ litres}}$ = 0.123 mol l^{-1}			